skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viljanen, Ari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Interplanetary (IP) shocks are perturbations observed in the solar wind. IP shocks correlate well with solar activity, being more numerous during times of high sunspot numbers. Earth‐bound IP shocks cause many space weather effects that are promptly observed in geospace and on the ground. Such effects can pose considerable threats to human assets in space and on the ground, including satellites in the upper atmosphere and power infrastructure. Thus, it is of great interest to the space weather community to (a) keep an accurate catalog of shocks observed near Earth, and (b) be able to forecast shock occurrence as a function of the solar cycle (SC). In this work, we use a supervised machine learning regression model to predict the number of shocks expected in SC25 using three previously published sunspot predictions for the same cycle. We predict shock counts to be around 275 ± 10, which is ∼47% higher than the shock occurrence in SC24 (187 ± 8), but still smaller than the shock occurrence in SC23 (343 ± 12). With the perspective of having more IP shocks on the horizon for SC25, we briefly discuss many opportunities in space weather research for the remainder years of SC25. The next decade or so will bring unprecedented opportunities for research and forecasting effects in the solar wind, magnetosphere, ionosphere, and on the ground. As a result, we predict SC25 will offer excellent opportunities for shock occurrences and data availability for conducting space weather research and forecasting. 
    more » « less
  2. Abstract A variety of magnetosphere‐ionosphere current systems and waves have been linked to geomagnetic disturbance (GMD) and geomagnetically induced currents (GIC). However, since many location‐specific factors control GMD and GIC intensity, it is often unclear what mechanisms generate the largest GMD and GIC in different locations. We address this challenge through analysis of multi‐satellite measurements and globally distributed magnetometer and GIC measurements. We find embedded within the magnetic cloud of the 23–24 April 2023 coronal mass ejection (CME) storm there was a global scale density pulse lasting for 10–20 min with compression ratio of . It caused substantial dayside displacements of the bow shock and magnetopause, changes of and , respectively, which in turn caused large amplitude GMD in the magnetosphere and on the ground across a wide local time range. At the time this global GMD was observed, GIC measured in New Zealand, Finland, Canada, and the United States were observed. The GIC were comparable (within factors of 2–2.5) to the largest ever recorded during 14 year monitoring intervals in New Zealand and Finland and represented 2‐year maxima in the United States during a period with several Kp7 geomagnetic storms. Additionally, the GIC measurements in the USA and other mid‐latitude locations exhibited wave‐like fluctuations with 1–2 min period. This work suggests that large density pulses in CME should be considered an important driver of large amplitude, global GMD and among the largest GIC at mid‐latitude locations, and that sampling intervals are required to capture these GMD/GIC. 
    more » « less